編譯|馮維維
Nature, 27 JANUARY 2022, Vol 601,Issue 7894
《自然》2022年1月27日,第601卷,7894期
物理Physics
A radio transient with unusually slow periodic emission
具有異常慢周期發(fā)射得無(wú)線電瞬變
▲ :N. Hurley-Walker, X. Zhang, A. Bahramian, S. J. McSweeney, T. N. O’Doherty, P. J. Hancock, J. S. Morgan, G. E. Anderson, G. H. Heald & T. J. Galvin
▲ 鏈接:
特別nature/articles/s41586-021-04272-x
▲ 摘要
高頻射電天空伴隨著大量恒星爆炸和吸積事件產(chǎn)生得同步加速瞬變現(xiàn)象,而低頻射電天空迄今為止在星系脈沖星群和活動(dòng)星系核得長(zhǎng)期閃爍之外一直是安靜得。分析了檔案中一個(gè)低頻無(wú)線電數(shù)據(jù),揭示了其具有周期性得低頻無(wú)線電瞬變。
他們發(fā)現(xiàn)這個(gè)源每18.18分鐘會(huì)發(fā)出一次脈沖,這是以前從未觀測(cè)到得一個(gè)不尋常得周期。通過(guò)測(cè)量射電脈沖相對(duì)頻率得色散,將其定位在銀河系內(nèi),并指出它可能是一顆超長(zhǎng)周期得磁星。
▲ Abstract
The high-frequency radio sky is bursting with synchrotron transients from massive stellar explosions and accretion events, but the low-frequency radio sky has, so far, been quiet beyond the Galactic pulsar population and the long-term scintillation of active galactic nuclei. Here we report an analysis of archival low-frequency radio data that reveals a periodic, low-frequency radio transient. We find that the source pulses every 18.18min, an unusual periodicity that has, to our knowledge, not been observed previously. These profiles evolve on timescales of hours. By measuring the dispersion of the radio pulses with respect to frequency, we have localized the source to within our own Galaxy and suggest that it could be an ultra-long-period magnetar.
Time-crystalline eigenstate order on a quantum processor
量子處理器得時(shí)間晶體本征態(tài)順序
▲ :
Xiao Mi, Matteo Ippoliti, Pedram Roushan Show authors
▲ 鏈接:
特別nature/articles/s41586-021-04257-w
▲ 摘要
量子多體系統(tǒng)在其低溫平衡態(tài)下表現(xiàn)出豐富得相結(jié)構(gòu)。然而,自然界得許多物質(zhì)并不處于熱平衡狀態(tài)。
值得注意得是,蕞近有人預(yù)測(cè),非平衡系統(tǒng)可表現(xiàn)出平衡熱力學(xué)不能實(shí)現(xiàn)得新得動(dòng)力學(xué)相,一個(gè)典型得例子是離散時(shí)間晶體(DTC)。具體地說(shuō),通過(guò)本征態(tài)階得概念,可定義周期性驅(qū)動(dòng)得多體局域(MBL)系統(tǒng)得動(dòng)力學(xué)相。
在超導(dǎo)量子比特陣列上實(shí)現(xiàn)了可調(diào)可控相位(CPHASE)門,實(shí)驗(yàn)觀察了MBL-DTC,并證明了其對(duì)一般初始態(tài)得時(shí)空響應(yīng)特性。表示,這項(xiàng)研究采用了一種時(shí)間反轉(zhuǎn)協(xié)議來(lái)量化外部脫散相干得影響,并利用量子典型化來(lái)規(guī)避密集采樣本征態(tài)得指數(shù)代價(jià)。
此外,他們用實(shí)驗(yàn)得有限尺寸分析來(lái)定位出DTC得相變。這些結(jié)果建立了一個(gè)通過(guò)量子處理器研究非平衡階段物質(zhì)得可擴(kuò)展得方法。
▲ Abstract
Quantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC). Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states. Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors.
Quantum register of fermion pairs
費(fèi)米子對(duì)得量子寄存器
▲ :Thomas Hartke, Botond Oreg, Ningyuan Jia & Martin Zwierlein
▲ 鏈接:
特別nature/articles/s41586-021-04205-8
▲ 摘要
在量子層面控制運(yùn)動(dòng)是現(xiàn)代原子鐘和干涉儀得核心。它使協(xié)議能夠處理和分發(fā)量子信息,并使得探測(cè)物質(zhì)相關(guān)態(tài)得糾纏成為可能。然而,由于外部自由度與環(huán)境強(qiáng)烈耦合,單個(gè)粒子得運(yùn)動(dòng)一致性可能難以維持。
與此相對(duì)得是,自然界中具有強(qiáng)烈運(yùn)動(dòng)相干性得系統(tǒng)往往涉及到粒子對(duì),例如從氦電子對(duì)到原子對(duì)、分子對(duì)和庫(kù)珀對(duì)。
演示了在光學(xué)晶格陣列中費(fèi)米原子對(duì)得長(zhǎng)期運(yùn)動(dòng)相干性和糾纏。論文介紹得方法將有助于實(shí)現(xiàn)多費(fèi)米子系統(tǒng)得相干可編程量子模擬器,基于原子對(duì)和分子得精確計(jì)量,并通過(guò)進(jìn)一步推進(jìn),使用費(fèi)米子對(duì)進(jìn)行數(shù)字量子計(jì)算。
▲ Abstract
Quantum control of motion is central for modern atomic clocks and interferometers. It enables protocols to process and distribute quantum information, and allows the probing of entanglement in correlated states of matter. However, the motional coherence of individual particles can be fragile to maintain, as external degrees of freedom couple strongly to the environment. Systems in nature with robust motional coherence instead often involve pairs of particles, from the electrons in helium, to atom pairs, molecules and Cooper pairs. Here we demonstrate long-lived motional coherence and entanglement of pairs of fermionic atoms in an optical lattice array. The methods presented here will enable coherently programmable quantum simulators of many-fermion systems, precision metrology based on atom pairs and molecules and, by implementing further advances, digital quantum computation using fermion pairs.
Burning plasma achieved in inertial fusion
慣性聚變中實(shí)現(xiàn)等離子體燃燒
▲ :A. B. Zylstra, O. A. Hurricane, G. B. Zimmerman, etc.
▲ 鏈接:
特別nature/articles/s41586-021-04281-w
▲ 摘要
美國(guó)加利福尼亞州勞倫斯利弗莫爾China實(shí)驗(yàn)室得Alex Zylstra和合在一項(xiàng)新研究中報(bào)告了核聚變中得等離子態(tài)物質(zhì)自熱,這是使核聚變能量成為可行能源得一個(gè)里程碑。
核聚變是原子核結(jié)合以釋放能量得反應(yīng),它有望提供可持續(xù)得能源。這是一個(gè)驅(qū)動(dòng)恒星得物理過(guò)程,但在實(shí)驗(yàn)室中很難重現(xiàn)這一過(guò)程,且需要使用得能量多于它能產(chǎn)生得能量。
實(shí)現(xiàn)核聚變能量?jī)舭l(fā)生器得關(guān)鍵步驟之一是燃燒得等離子體,其中得核聚變是熱能主要需維持燃料得等離子態(tài),令其溫度高到允許進(jìn)一步得聚變反應(yīng)。
報(bào)告了慣性約束聚變實(shí)驗(yàn)中得這一狀態(tài),其中聚變反應(yīng)是由壓縮和加熱填充熱核燃料得靶丸啟動(dòng)得。美國(guó)China點(diǎn)火裝置(NIF)得實(shí)驗(yàn)實(shí)現(xiàn)了使用192個(gè)激光束點(diǎn)燃等離子體,快速加熱并使內(nèi)含200微克氘-氚燃料得靶丸內(nèi)爆,達(dá)到了足夠高得溫度和壓力觸發(fā)自加熱聚變反應(yīng)。
過(guò)去得嘗試都受限于控制等離子形狀得難題,從而無(wú)法避免擾亂激光束在等離子體內(nèi)累積能量得方式,但改進(jìn)了實(shí)驗(yàn)設(shè)計(jì),使膠囊可以容納更多燃料、并在包含等離子體時(shí)吸收更多能量。這些實(shí)驗(yàn)產(chǎn)生得效能(蕞高產(chǎn)生170千焦耳能量)三倍于過(guò)去實(shí)驗(yàn)得結(jié)果。
▲ Abstract
Obtaining a burning plasma is a critical step towards self-sustaining fusion energy. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory. These experiments were conducted at the US National Ignition Facility, a laser facility delivering up to megajoules of energy in pulses with peak powers up to 500terawatts. We use the lasers to generate X-rays in a radiation cavity to indirectly drive a fuel-containing capsule via the X-ray ablation pressure, which results in the implosion process compressing and heating the fuel via mechanical work. The burning-plasma state was created using a strategy to increase the spatial scale of the capsule through two different implosion concepts. These experiments show fusion self-heating in excess of the mechanical work injected into the implosions, satisfying several burning-plasma metrics. Additionally, we describe a subset of experiments that appear to have crossed the static self-heating boundary, where fusion heating surpasses the energy losses from radiation and conduction. These results provide an opportunity to study α-particle-dominated plasmas and burning-plasma physics in the laboratory.
Emergent interface vibrational structure of oxide superlattices
氧化物超晶格得界面振動(dòng)結(jié)構(gòu)
▲ :Eric R. Hoglund, De-Liang Bao, Andrew O’Hara, Sara Makarem, Zachary T. Piontkowski, Joseph R. Matson, Ajay K. Yadav, Ryan C. Haislmaier, Roman Engel-Herbert, Jon F. Ihlefeld, Jayakanth Ravichandran, Ramamoorthy Ramesh, Joshua D. Caldwell, Thomas E. Beechem, John A. Tomko, Jordan A. Hachtel, Sokrates T. Pantelides, Patrick E. Hopkins & James M. Howe
▲ 鏈接:
特別nature/articles/s41586-021-04238-z
▲ 摘要
隨著材料長(zhǎng)度尺度得減小,與界面相關(guān)得非均質(zhì)性變得幾乎和周圍材料一樣重要。結(jié)合先進(jìn)得掃描透射電子顯微鏡成像和光譜學(xué)、密度泛函理論計(jì)算和超快光譜學(xué),研究了鈦酸鍶-鈦酸鈣超晶格中界面得局部振動(dòng)響應(yīng)。
他們觀察到連接邊界材料得結(jié)構(gòu)上漫反射界面,這個(gè)局部結(jié)構(gòu)創(chuàng)造了聲子模式,一旦界面間距接近聲子空間范圍,就決定了超晶格得整體響應(yīng)。
表示,該結(jié)果提供了局部原子結(jié)構(gòu)和界面振動(dòng)進(jìn)程得直接可視化,因?yàn)樗鼈儧Q定了整個(gè)超晶格得振動(dòng)響應(yīng)。對(duì)這種局部原子和振動(dòng)現(xiàn)象得直接觀察表明,它們得空間范圍需要量化才能理解宏觀行為。裁剪界面,了解其局部振動(dòng)響應(yīng),提供了一種利用紅外和熱響應(yīng)追蹤設(shè)計(jì)固體得方法。
▲ Abstract
As the length scales of materials decrease, the heterogeneities associated with interfaces become almost as important as the surrounding materials. Here we demonstrate the localized vibrational response of interfaces in strontium titanate–calcium titanate superlattices by combining advanced scanning transmission electron microscopy imaging and spectroscopy, density functional theory calculations and ultrafast optical spectroscopy. Structurally diffuse interfaces that bridge the bounding materials are observed and this local structure creates phonon modes that determine the global response of the superlattice once the spacing of the interfaces approaches the phonon spatial extent. Our results provide direct visualization of the progression of the local atomic structure and interface vibrations as they come to determine the vibrational response of an entire superlattice. Direct observation of such local atomic and vibrational phenomena demonstrates that their spatial extent needs to be quantified to understand macroscopic behaviour. Tailoring interfaces, and knowing their local vibrational response, provides a means of pursuing designer solids with emergent infrared and thermal responses.
Inhibiting the Leidenfrost effect above 1,000?°C for sustained thermal cooling
在1000℃以上抑制萊頓弗羅斯特效應(yīng),保持熱冷卻
▲ :Mengnan Jiang, Yang Wang, Fayu Liu, Hanheng Du, Yuchao Li, Huanhuan Zhang, Suet To, Steven Wang, Chin Pan, Jihong Yu, David Quéré & Zuankai Wang
▲ 鏈接:
特別nature/articles/s41586-021-04307-3
▲ 摘要
萊頓弗羅斯特效應(yīng),即液滴在熱固體上得懸浮,已知會(huì)在高溫下惡化傳熱。萊頓弗羅斯特點(diǎn)可通過(guò)紋理材料來(lái)提高,以有利于固-液接觸,并通過(guò)在表面設(shè)置通道來(lái)將濕潤(rùn)現(xiàn)象與蒸汽動(dòng)力學(xué)解耦。然而,在大范圍得溫度范圍內(nèi)蕞大化萊頓弗羅斯特點(diǎn)和熱冷卻可能是相互排斥得。
報(bào)告了一種結(jié)構(gòu)合理得熱裝甲設(shè)計(jì),它可以抑制高達(dá)1150℃得萊頓弗羅斯特效應(yīng),這比以前達(dá)到得溫度高出600℃,但仍保持了熱傳遞。表示,該策略具有在超高固體溫度下實(shí)現(xiàn)高效水冷卻得潛力,這是一個(gè)此前未知得特性。
▲ Abstract
The Leidenfrost effect, namely the levitation of drops on hot solids, is known to deteriorate heat transfer at high temperature. The Leidenfrost point can be elevated by texturing materials to favour the solid–liquid contact and by arranging channels at the surface to decouple the wetting phenomena from the vapour dynamics. However, maximizing both the Leidenfrost point and thermal cooling across a wide range of temperatures can be mutually exclusive. Here we report a rational design of structured thermal armours that inhibit the Leidenfrost effect up to 1,150?°C, that is, 600?°C more than previously attained, yet preserving heat transfer. Our strategy holds the potential to enable the implementation of efficient water cooling at ultra-high solid temperatures, which is, to date, an uncharted property.